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Abstract

In this paper we present a nonlinear version of the well-
known anomaly detection method referred to as the RX-
algorithm. Extending this algorithm to a feature space as-
sociated with the original input space via a certain nonlin-
ear mapping function can provide a nonlinear version of the
RX-algorithm. This nonlinear RX-algorithm, referred to as
the kernel RX-algorithm, is basically intractable mainly due
to the high dimensionality of the feature space produced by
the non-linear mapping function. However, in this paper it
is shown that the kernel RX-algorithm can easily be imple-
mented by kernelizing it in terms of kernels which implicitly
compute dot products in the feature space. Improved per-
formance of the kernel RX-algorithm over the conventional
RX-algorithm is shown by testing several hyperspectral im-
agery for military target and mine detection.

1 Introduction

Anomaly detectors are pattern recognition schemes that are
used to detect objects that might be of military interest. Al-
most all the anomaly detectors attempt to locate anything
that looks different spatially or spectrally from its surround-
ings. In spectral anomaly detection algorithms, pixels (ma-
terials) that have a significantly different spectral signature
from their neighboring background clutter pixels are iden-
tified as spectral anomalies. Spectral anomaly detection
algorithms [1–5] could also use spectral signatures to de-
tect anomalies embedded within a background clutter with
a very low signal-to-noise ratio. In spectral anomaly detec-
tors, no prior knowledge of the target spectral signature are
utilized or assumed.

Most of the detection algorithms in the literature
[1, 5–7] assume that the HSI data can be represented by
the multivariate normal (Gaussian) distribution and under
the Gaussianity assumption, the generalized likelihood ratio
test (GLRT) is used to test the hypotheses to find the exis-
tence of a target in the image. The Gaussianity assumption
has been used mainly because of mathematical tractability
that allows the formation of widely used detection models,
such as GLRT. However, in reality the HSI data might not
closely follow the Gaussian distribution. Nevertheless, in

various fields of signal processing, GLRT is used to detect
signals (targets) of interest in noisy environments.

In this paper we formulated a nonlinear version of
the RX- algorithm by transforming each spectral pixel into
a very high- dimensional feature space (could be infinite di-
mension) by a nonlinear mapping function. The spectral
pixel in the feature space now consists of possibly the origi-
nal spectral bands and a nonlinear combination of the spec-
tral bands of the original spectral signature. Implementing
the RX-algorithm in the feature space, the higher order cor-
relations between spectral bands are exploited, thus result-
ing in a nonlinear RX-algorithm. However, this nonlinear
RX-algorithm cannot be implemented directly due to the
high dimensionality of the feature space. It is shown in
Section 4 that because the RX-algorithm consists of inner
products of spectral vectors, it is possible to implement a
kernel-based nonlinear version of the RX-algorithm by us-
ing kernel functions, and their properties [8].

Kernel-based versions of a number of feature ex-
traction or pattern recognition algorithms have recently
been proposed [9–14]. In [12], a kernel version of principal
component analysis (PCA) was proposed for nonlinear fea-
ture extraction and in [13] a nonlinear kernel version of the
Fisher discriminant analysis was implemented for pattern
classification. In [14], a kernel-based clustering algorithm
was proposed and in [10] kernels were used as generalized
dissimilarity measures for classification. Kernel methods
have also been applied to face recognition in [9].

This paper is organized as follows. Section 2
provides an introduction to the RX-algorithm. Section 3
describes kernel functions and their relationship with the
dot product of input vectors in the feature space. In Sec-
tion 4 we show the derivation of the kernel version of the
RX-algorithm. Experimental results comparing the RX-
algorithm and the kernel-based RX-algorithm are given in
Section 5. Finally, in Section 6 conclusion and discussion
are provided.

2 Introduction to RX-ALGORITHM

Reed and Yu in [6] developed a GLR test, so called the
RX anomaly detection, for multidimensional image data as-
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suming that the spectrum of the received signal (spectral
pixel) and the covariance of the background clutter are un-
known. Let each input spectral signal be denoted by a vector���������	��
����������
�������������������
������������ consisting of � spec-
tral bands. Define �! to be a �#"%$ matrix of the $ ref-
erence background clutter pixels. Each observation spectral
pixel is represented as a column in the sample matrix �& 

�  �(' ����)*�+���-,.�/�����0��� $ �21-� (1)

The two competing hypotheses that the RX-algorithm must
distinguish are given by35476 �8�:9;� Target absent (2)3 � 6 �8�:<>=;?@9;� Target present

where <&�BA under
3 4

and <&�C) under
3 � , respectively.9 is a vector that represents the background clutter noise

process, and = is the spectral signature of the signal (target)
given by =%�D' E � �FE � �������G�FE � 1 . The target signature = and
background covariance H  are assumed to be unknown. The
model assumes that the data arises from two normal PDFs
with the same covariance matrix but different means. Under354

the data (background clutter) is modeled as I �JAK� H  �
and under

3 � it is modeled as I �JEL� H  � . The background
covariance H  is estimated from the reference background
clutter data. The estimated background covariance MH  is
given by

MH  � )
$

NO P
Q � ������R��TSCUV  �G������R��TSWUV  � � � (3)

where UX  is the estimated background clutter sample mean
given by

UV  � )
$

NO P
Q � ����R2�G� (4)

Assuming a single pixel target Y as the observation test vec-
tor, the expression for the RX-algorithm is given byZ\[ � Y ���B� Y SWUV  � � MH^] � � Y SWUV  ��� (5)

3 Feature Space and Kernel Methods

Suppose the input hyperspectral data is represented by the
data space ( _a`cb � ) and d be a feature space associated
with _ by a nonlinear mapping function e

e 6 _gfhd � (6)�8ifDe �����G�
where � is an input vector in _ which is mapped into a po-
tentially much higher dimensional feature space. Using the
kernel trick (Equation 7), it allows us to implicitly compute

the dot products in d without mapping the input vectors
into d ; therefore, in the kernel methods, the mapping e
does not need to be identified. The kernel representation for
the monomial dot products in d is expressed asj ��� P ���lkm���^n e ���

P �G� e ���lk*�0o (7)� e ���
P �Tp e ��� k �G�

Equation 7 shows that the dot products in d can be avoided
and replaced by a kernel, a nonlinear function which can be
easily calculated without identifying the nonlinear map e .
Two commonly used kernels are the Gaussian RBF kernel:j ���q��rs�t� exp � ]Tu-v>]xw�uzy{ � and Polynomial kernel: �����|p�rs�?} ��~ .
4 Kernel RX-Algorithm

In this section, we remodel the RX-algorithm in the feature
space by assuming the input data has already been mapped
into a high dimensional feature space. The two hypotheses
in the nonlinear domain are now354��56 e �����t� e ��9T��� Target absent (8)3 � �56 e �����t��<�� e ��=���? e �J9s�G� Target present

The corresponding RX-algorithm in the feature
space isZ\[ � e � Y ������� e � Y �qSgUV  � � � MH^] � � � e � Y �TSgUV  � � (9)

where MH� � and UV  � are the estimated covariance and back-
ground clutter sample mean in the feature space, respec-
tively, given by

MH� � � )
$

NO P
Q � � e ������R����TSgUV  � �G� e ������R����tSWUV  � � � (10)

and

UV  � � )
$

NO P
Q � e ������R����G� (11)

The nonlinear RX-algorithm given by Equation (9)
is now in the feature space which cannot be implemented
explicitly due to the non-linear mapping e which produces
a data space of high dimensionality. In order to avoid im-
plementing Equation (9) directly we need to kernelize (9)
by using the kernel trick introduced in Section 3.

The estimated background covariance matrix can
be represented by its eigenvector decomposition or spectral
decomposition as given by

MH  � �:�����  �!� � � (12)



where �  is a diagonal matrix consisting of the eigenvalues
and �!� is a matrix whose columns are the eigenvectors of�  � in the feature space. The eigenvector matrix � � is
given by ���%�B' � �� ��� �� ������� 1z� (13)

where � k � is the � th eigenvector with non-zero eigenvalue.

The pseudoinverse of the estimated background
covariance matrix can also be written as

MH�� � �:����� ] � ��� � � (14)

Each eigenvector � k � in the feature space can be ex-
pressed as a linear combination of the centered input vectorse { ������R2��� � e ������R����+S UV  � in the feature space as shown
by

� k � � NO P
Q � �

kP e { ������R����t� �� �	� k � (15)

where �  � � ' e { ������)*��� e { �����J,L��������� e { ����� $ ���z1 and for
all the eigenvectors � � � �! ��
 � (16)

where
� k � � � k � � � k� ��������� � kN ��� and


 �� � � � � � �������G� � N ��� are shown in [12] to be the eigen-
vectors of the kernel matrix (Gram matrix) � � �  � �  �
normalized by the square root of their corresponding
eigenvalues.

Substituting Equation (16) into (14) yields

MH^] � � � �� ��
 �  ] � 
 � � �  � � (17)

Inserting Equation (17) into (9) the nonlinear RX-algorithm
can be rewritten asZ\[ � e � Y ��� (18)�B� e � Y �TSgUV  � � � �  �
 � ] � 
 � � �  � � e � Y �qSWUV  � ���
The dot product terms e � Y ��� �  � in the feature space can
be represented in terms of the kernel function:

e � Y � � �� � (19)� e � Y � � ��' e ������)*��� e �����-,.��������� e ����� $ ���21
S )
$

NO P
Q � e ������R�������B� j ������)���� Y � j �����J,L��� Y �B����� j ����� $ �G� Y ���

S )
$

NO P
Q � j ������R2�G� Y �

����� �  � Y � � S )
$

NO P
Q � j ������R��G� Y ��� � �� �

where ��� �  � Y ��� represents a vector whose entries are the
kernels

j ������R��G� Y ����Rc� )������ $ � and
�N�� NP Q � j ������R���� Y �

represents the scalar mean of ��� �  � Y ��� . Similarly,

UV �  � �  � (20)

� )
$

NO P
Q � e ������R2��� ��� ' e ������)*��� e �����J,L��������� e ����� $ ���z1

S )
$

NO P
Q � e ������R������

� )
$

NO P
Q � � j ������R��G������)���� j ������R��G��
 �-,.��������� j ������R��G����� $ �����

S )
$ � NO P Q �

NOk Q � j ������R�������� � ���
� )
$

NO P
Q � ��������R2�G� �  �TS

)
$ � NO P Q �

NOk Q � j ������R�������� � ���
� � � UV�� �

Also using the properties of the Kernel PCA [12],
as shown in Appendix I, we have the relationship

M� ] � � )
$ 
 �  ] � 
 � � (21)

where we denote the estimated centered Gram matrix M�  �M� � �  � �  �0�g� M� �
P k the $ "%$ kernel matrix whose en-

tries
j ��� P ��� k � are the dot products n e { ���

P ��� e { ��� k � o
and $ is the total number of background clutter samples
which can be ignored. Substituting (19), (20) , and (21)
(without

�N ) into (18) the kernelized version of the RX-
algorithm is given byZ\[�� � Y �t��� � �� S � � UV � � � M� ] � � � �� S � � UV � � (22)

which can now be implemented with no knowledge of the
mapping function e . The only requirement is a good choice
for the kernel function

j
. Note that M�  is the centered Gram

matrix, as shown in [8]. The centered M�  is given by

M�8 �(� �8 S���� �8 S �8 ��� ?�� � �8 ���\��� (23)

where �8 is the Gram matrix before centering and the ele-
ments of the !h""! matrix �#�$�\�

P k\�()&% ! .

5 Simulation Results

In this section, we apply both the kernel RX- and conven-
tional RX-algorithms to two HYDICE images – the Forest
Radiance I (FR-I) image and the Desert Radiance II (DR-
II) image – and the hyperspectral mine image, as shown in
Fig. 1. FR-I includes total 14 targets and DR-II contains



6 targets along the road; all the targets are military vehi-
cles. The hyperspectral mine image contains a total of 33
surface mines. A HYDICE imaging sensor generates 210
bands across the whole spectral range (0.4 – 2.5 X�� ), but
we only use 150 bands by discarding water absorption and
low signal to noise ratio (SNR) bands; the bands used are
the 23rd–101st, 109th–136th, and 152nd–194th. The hy-
perspectral mine image consists of 70 bands whose spectral
range spans 8 – 11.5 X�� .

Gaussian RBF kernel, �����q��r � � exp � ]su-v>]xw�uzy{ ���
was used to implement the kernel RX-algorithm; the value
of � was set to 40. All the pixel vectors in the test image are
first normalized by a constant, which is a maximum value
obtained from all the spectral components of the spectral
vectors in the corresponding test image, so that the entries
of the normalized pixel vectors fit into the interval of spec-
tral values between zero and one. The rescaling of pixel
vectors was mainly performed to effectively utilize the dy-
namic range of Gaussian RBF kernel.

The kernel matrix M�  can be estimated either glob-
ally or locally. The global estimation must be performed
prior to detection and normally needs a large amount of
data samples to successfully represent all the background
types present in a given data set. In this paper, to glob-
ally estimate M�  we need to use all the spectral vectors in a
given test image. A well-known data clustering algorithm,j

-means [15], is used on all the spectral vectors in order
to generate a significantly less number of spectral vectors
(centroids) from which M�8 is estimated. By using a small
number of distinct background spectral vectors a manage-
able kernel matrix is generated where a more efficient ker-
nel RX-algorithm is now implemented. The number of the
representative spectral vectors obtained from the

j
-means

procedure was set to 600, which means the number of cen-
troids generated by the

j
-means was 600.

For local estimation of M�  we use local back-
ground samples, which are from the neighboring area of the
pixel being tested. For each test pixel location, a dual con-
centric rectangular window is used to separate a local area
into two regions – the inner-window region (IWR) and the
outer-window region (OWR), as shown in Fig. 2; the lo-
cal kernel matrix and the background covariance matrix are
calculated from the pixel vectors in the OWR. The test pixel
vector Y was obtained from the IWR.

The dual concentric windows naturally divide the
local area into the potential target region – the IWR – and
the background region – the OWR – whose local statistics
in the original and nonlinear feature domain are compared
using the conventional RX- and kernel RX- algorithms, re-
spectively. The size of the IWR is set to enclose targets to be
detected whose approximate size is based on prior knowl-
edge of the range, field of view (FOV), and the dimension
of the biggest target in the given data set. Similarly, the
size of the OWR is set to include sufficient statistics from

the neighboring background. The size for the dual windows
used were 5 " 5 and 13 " 13 pixel areas, respectively. The
size of the OWR was set to include a sufficient number of
spectral vectors to generate the kernel matrix M�8 .

Figs. 3, 4, and 5 show the anomaly detection re-
sults of both the kernel RX and the conventional RX using
the local dual window applied to the FR-I and DR-II im-
ages and the hyperspectral mine image, respectively. The
kernel RX detected most of the targets and mines with a
few false alarms while the conventional RX generated much
more false alarms and missed some targets; especially, in
the case of FR-I the conventional RX missed 7 successive
targets from the left. For both the HYDICE images and the
mine image the kernel RX showed significantly improved
performance over the conventional RX.

Figs. 6 and 7 show the ROC curves for the detec-
tion results for FR-I and DR-II images, as shown in Figs. 3
and 4, using the kernel RX and the conventional RX based
on the local dual window. Figs. 6 and 7 also include the
ROC curves for the kernel RX based on the global ker-
nel matrix. The global method for the kernel RX provided
slightly improved performance over the local method for
the HYDICE images that were tested. Fig. 8 shows the the
ROC curves for the detection results for the hyperspectral
mine image, as shown in Fig. 5, using the kernel RX and
the conventional RX based on the local dual window. Note
that the kernel RX significantly outperformed the conven-
tional RX at lower false alarm rates.

6 Conclusions

We have extended the RX-algorithm to a nonlinear feature
space by kernelizing the corresponding nonlinear GLRT ex-
pression. The GLRT expression of the kernel RX is similar
to the conventional RX, but every term in the expression is
in kernel forms which can be readily calculated in terms of
the input data in the original space. The kernel RX showed
superior detection performance over the conventional RX
given the HYDICE images tested. This is mainly because
the high order correlations between the spectral bands are
exploited by the kernel RX.

Appendix I

In this Appendix derivation of Kernel PCA and its prop-
erties providing the relationship between the covariance
matrix and the corresponding Gram matrix are presented.
Our goal here is to prove expression (21). To drive the
Kernel PCA consider the background clutter covariance
matrix in feature space for the centered data �  � �



� e { ��� ��� e { ������� ����� e { ��� N ���
M�  � � �  � � �  � � (24)

The PCA eigenvectors are computed by solving the eigen-
value problem�

� � � �  � � � (25)

� )
$

NO P
Q � e { ���

P � e { ���
P � � � �

� )
$

NO P
Q � n e { ���

P ����� � o e { ���
P ���

where ��� is an eigenvector in d with a corresponding
nonzero eigenvalue

�
. Equation (25) indicates that any

eigenvector � � with corresponding

���
�gA are spanned by

the input data e { ��� �G�G��������� e { ��� N � – i.e.

� � � NO P
Q � �

P
e { ���

P �t� �� �	� � (26)

where
� � � � �m� � �.��������� � N ��� . Substituting (26) into (25)

and multiplying with e { �����x� � , �8�()L�������G� $ , yields� NO P
Q � �

P n e { ��������� e { ���
P ��o (27)

� )
$

NO P
Q � �

P
e { �����x� e { ���

P � e { ���
P � � NO P

Q � e { ���
P �

� )
$

NO P
Q � �

P n e { ��� � ���
NOk Q � e { ��� k �+n e { ��� k ��� e { ���

P �+o7o7�
for all �8�()L�������G� $ .

We denote by �  � � � [  � [  �/� � � �
P k the $ " $

kernel (Gram) matrix whose entries are the dot products ne { ���
P ��� e { ���lk��+o . Equation (25) can now be rewritten as

$
�
� � �8 � � (28)

where
�

turn out to be the eigenvectors with nonzero eigen-
values of the kernel matrix �  , as shown in [12]. Note that
each

�
need to be normalized by the square root of its cor-

responding eigenvalue.

Furthermore, we assumed that the data was cen-
tered in the feature space, however, we cannot center the
data in the high dimensional feature space because we do
not have any knowledge about the non-linear mapping e .
Therefore, we have to start with the original uncentered data
and the resulting Gram matrix �% needs to be properly cen-
tered. As shown in [12], the centered Gram matrix M�8 can
be obtained from the uncentered Gram Matrix �	� by

M� � �(� � � S�� N � � S � � � N ? � N � � � N �G� (29)

where �#� N �
P k � )&% $ is an $ " $ matrix. From the

definition of PCA in the feature space (25) and the Kernel
PCA (28) we can now write the eigenvector decomposition
of the background covariance matrix and Gram matrix as

M�  � �:��� �  ��� � (30)

and

M�8 � 
�
 � � 
 � � (31)

respectively. Using pseudoinverse matrix properties [16]
the pseudoinverse background covariance matrix M� � � and

inverse Gram matrix M� ] � can also be written as

M� � � � � � � ] � � � � (32)

and

M� ] � � 
�
 ] �� � 
 � � (33)

respectively. From the relationship between the eigenval-
ues of covariance matrix in the feature space and the Gram
matrix described in (28)

�  � )
$ 
 � � (34)

where �  is a diagonal matrix with its diagonal elements
being the eigenvalues of M�  � and


 � � is a diagonal matrix
with diagonal values equal to the eigenvalues of the Gram
matrix M�8 . Substituting (34) into (33) we obtain the rela-
tionship

M� ] � � )
$ 
 �  �] � 
 � (35)

where $ is a constant representing the total number of
background clutter samples which can be ignored.
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Figure 1: Sample band images (48th) from HYDICE im-
ages and mine image. (a) the Forest Radiance I image, (b)
the Desert Radiance II image and (c) the hyperspectral mine
image.
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Figure 2: Example of the dual concentric windows in the
hyperspectral images.
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Figure 3: Detection results for the Forest Radiance I im-
age using the kernel RX-algorithm and conventional RX-
algorithm based on the local dual window. (a) Kernel RX,
(b) 3-D plot of (a), (c) RX, and (d) 3-D plot of (c).
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Figure 4: Detection results for the Desert Radiance II im-
age using the kernel RX-algorithm and conventional RX-
algorithm based on the local dual window. (a) Kernel RX,
(b) 3-D plot of (a), (c) RX, and (d) 3-D plot of (c).
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Figure 5: Detection results for the mine image using the
kernel RX-algorithm and conventional RX-algorithm based
on the local dual window. (a) Kernel RX, (b) 3-D plot of
(a), (c) RX, (d) 3-D plot of (c).
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Figure 6: ROC curves obtained by the kernel RX-algorithm
based on the global and local kernel matrices and the con-
ventional RX-algorithm based on the local covariance ma-
trix for the Forest Radiance I image.
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Figure 7: ROC curves obtained by the kernel RX-algorithm
based on the global and local kernel matrices and the con-
ventional RX-algorithm based on the local covariance ma-
trix for the Desert Radiance II image.
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Figure 8: ROC curves obtained by the kernel RX-algorithm
and the conventional RX-algorithm based on the local dual
window for the hyperspectral mine image.


